Semi-Flipped class for Differential Equations, Fall 2023, with Steve Butler
These are the recordings and handouts for students in a class for differential equations. The videos are meant to go through the material in some depth. During class (not recorded) some portion of the time will have students going through and working problems with each other.
Introduction materials
01 - Introduction to the course (Blank PDF; Filled PDF; YouTube; Vimeo)
02 - Basics review (Blank PDF; Filled PDF; YouTube; Vimeo); [Handout]
03 - Verifying; initial values; setting up; existence and uniqueness (Blank PDF; Filled PDF; YouTube; Vimeo); [Handout]
First order differential equations
04 - Separable differential equations (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
05 - Linear first-order differential equations (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout] [Supplement]
06 - Exact ODEs and substitution (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
07 - Population models (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
08 - Autonomous ODEs (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Higher order differential equations
09 - Higher order ODEs; Wronskian (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
10 - Euler equations; strategy for nonhomogeneous ODE (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
11 - Order reduction; constant coefficient ODEs (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
12 - Spring-mass-damper systems (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
13 - Undetermined coefficients (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
14 - Variation of parameters (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Review for first and second order differential equations
Review (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Systems of differential equations
15 - Introduction to ODE systems (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
16 - Elimination method (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
17 - Basics of matrices (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
18 - Differential equations and matrices; eigenvalues and eigenvectors (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
19 - Handling complex eigenvalues (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
20 - Handling repeated eigenvalues (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
21 - Matrix exponentials (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
22 - Undetermined coefficients for systems (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
23 - Variation of parameters for systems (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Review for systems of differential equations
Review (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Laplace transforms
24 - Introduction to Laplace transforms (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
25 - Laplace transforms and ODEs (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
26 - Fun with partial fractions (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
27 - Derivatives and convolutions (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
28 - Piecewise functions (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
29 - Delta function (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Series solutions
30 - Introduction to series and ODEs (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
31 - Explicit solution from series + convergence (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
32 - Ordinary points + radius of convergence (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]
Review for Laplace transforms and series solutions
Review (Blank PDF; Filled PDF; YouTube; Vimeo) [Handout]